

CAREERS 360

AHSEC HS Maths Question Paper 2022

32T MATH

Give an example of a matrix which is not a square matrix. (a)

MATHEMATICS

Full Marks : 100

Pass Marks : 30

Time : Three hours

The figures in the margin indicate full marks for the questions.

Q. No. 1 (a-j) carries 1 mark each

 $1 \times 10 = 10$

Q. Nos. 2-13 carry 4 marks each

 $4 \times 12 = 48$

Q. Nos. 14-20 carry 6 marks each

 $6 \times 7 = 42$

Total = 100

1. Answer the following questions :

1×10=10

তলৰ প্ৰশ্নৰ উত্তৰ দিয়া :

(a) Give an example of a column matrix which is also a row matrix.

এটা স্তৰ্ণ মৌলিকক্ষৰ উদাহৰণ দিয়া যিটো শাৰী মৌলিকক্ষও হয়।

(b) “Diagonal elements of a skew-symmetric matrix are always zero” — Why ?

“বিষম-সমমিত মৌলিকক্ষৰ বিকৰ্ণ মৌলিকৰ সদায় শূন্য” — কিয় ?

(c) Let $f(x) = [x]$, where $[x]$ is a greatest integer function and $g(x) = x$. Find the value of $(f \circ g)(-\frac{1}{3})$.

ধৰা হ'ল $f(x) = [x]$, য'ত $[x]$ হ'ল গৰিষ্ঠ অখণ্ড ফলন আৰু $g(x) = x$.

$(f \circ g)(-\frac{1}{3})$ -ৰ মান উলিওৱা।

(d) Differentiate $\sin x$ with respect to e^x .

e^x -ৰ সাপেক্ষে $\sin x$ -ৰ অৱকলজ উলিওৱা।

(e) Write down the value of $\int_{-2}^2 |x| dx$.

$\int_{-2}^2 |x| dx$ -ৰ মান লিখা।

(f) Find the order of the differential equation

$$\left(\frac{d^4 y}{dx^4}\right)^5 + \sin(y'') = 0.$$

$\left(\frac{d^4 y}{dx^4}\right)^5 + \sin(y'') = 0$ অর্কল সমীকরণটোৰ ক্ৰম নিৰ্ণয় কৰা।

(g) Find the principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ - ৰ মুখ্যমান উলিওৱা।

(h) Fill in the blank :

খালী ঠাই পূৰ কৰা :

$$\lim_{x \rightarrow 0^-} \frac{1}{x} = \text{_____}.$$

(i) What is the direction cosine of X-axis ?

X- অক্ষৰ দিশাংক কিমান ?

(j) Let A and B be any two given sets. If $f : A \rightarrow B$ is a onto function, then find the range of f .

ধৰা হ'ল A আৰু B যিকোনো দুটা সংহতি। যদি $f : A \rightarrow B$ এটা আচ্ছাদক ফলন হয়, তেন্তে f -ৰ পৰিসৰ উলিওৱা।

2. Define an equivalence relation. Check whether the following relation R defined on the set of integers \mathbb{Z} is an equivalence relation or not, where $R = \{(a, b) \mid a - b \text{ is an integer}\}$. 1+3=4

সমতুল্যতা সম্বন্ধ সংজ্ঞা দিয়া। \mathbb{Z} -ত সংজ্ঞাবদ্ধ তলৰ সম্বন্ধ R টো সমতুল্যতা সম্বন্ধ হয়নে নহয় পৰীক্ষা কৰা, য'ত $R = \{(a, b) \mid a - b \text{ এটা অখণ্ড সংখ্যা}\}$ ।

OR / অথবা

Show that the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x) = 2x - 3$ is invertible. Also find the inverse of f . 4

দেখুওৱা যে $f : \mathbb{R} \rightarrow \mathbb{R}$ -ত সংজ্ঞাবদ্ধ $f(x) = 2x - 3$ ফলনটো প্রতিলোমনীয়। f -ৰ প্রতিলোমও উলিওৱা।

3. Show that

দেখুওৱা যে

$$\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{8}{17} = \cos^{-1} \frac{84}{85}$$

OR / অথবা

Solve the following equation :

তলৰ সমীকৰণটো সমাধান কৰা :

$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \operatorname{cosec} x)$$

4. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find the value λ and μ such that $A^2 + \lambda A + \mu I = 0$, where 0 is zero matrix of order 2.

4

যদি $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ আৰু $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ হয়, তেন্তে λ আৰু μ -ৰ মান উলিওৱা যাতে

$A^2 + \lambda A + \mu I = 0$, য'ত 0 হৈছে 2 ঘাতৰ শূন্য মৌলকক্ষ।

OR / অথবা

Determine the value of a for which the system is consistent. 4

a -ৰ মান নির্ণয় কৰা যাবে প্রণালীটো সুসংগত হয়।

$$x + y + z = 1$$

$$2x + 3y + 2z = 2$$

$$ax + ay + 2az = 4$$

5. Find the value of k so that the following function

$$f(x) = \begin{cases} \frac{\sin 100x}{99}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$

is continuous at $x = 0$.

4

$$\text{যদি } f(x) = \begin{cases} \frac{\sin 100x}{99}, & \text{যদি } x \neq 0 \\ k, & \text{যদি } x = 0 \end{cases}$$

ফলনটো $x = 0$ বিন্দুত অবিচ্ছিন্ন হয়, তেন্তে k ৰ মান নিৰ্গয় কৰা।

6. Find $\frac{dy}{dx}$ if — 2+2=4

উলিওৱা $\frac{dy}{dx}$ যদিহে —

$$(i) \quad \sin^2 x + \cos^2 y = 1$$

$$(ii) \quad y = e^{\cos x}$$

7. Prove that the greatest integer function defined by

$$f(x) = [x], \quad 0 < x < 2 \text{ is not differentiable at } x = 1.$$

4

প্ৰমাণ কৰা যে $f(x) = [x]$, $0 < x < 2$ -ৰ দ্বাৰা সংজ্ঞাবদ্ধ গৰিষ্ঠ অখণ্ড ফলনটো $x = 1$

বিন্দুত অৱকলনীয় নহয়।

[৬]

OR / অথবা

If (যদি) $e^y (x+1) = 1$, show that (দেখুওরা যে)

4

$\frac{d^2y}{dx^2} = \left(\frac{dy}{dx} \right)^2$

$$x^2 + x^3 + 5x^2 - 5x = (x)$$

$$\frac{d^2y}{dx^2} = \left(\frac{dy}{dx} \right)^2.$$

8. Evaluate :

2+2=4

মান নির্ণয় করা :

$$(a) \int \left(x^{3/2} + 2e^x - \frac{1}{x} \right) dx$$

$$(b) \int \sin^3 x \cos^2 x dx$$

OR / অথবা

Evaluate :

4

মান নির্ণয় করা :

$$\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$$

9. Find the equations of the tangent and normal to the curve

$$x^{2/3} + y^{2/3} = 2 \text{ at } (1, 1).$$

2+2=4

$x^{2/3} + y^{2/3} = 2$ বক্রে $(1, 1)$ বিন্দুত স্পর্শক আৰু অভিলম্বৰ সমীকৰণ উলিওৱা।

OR / অথবা

Find the local maxima and local minima, if any, of the function
 $f(x) = x^3 - 6x^2 + 9x + 15.$ 2+2=4

$f(x) = x^3 - 6x^2 + 9x + 15$ ফলনটোৰ স্থানীয় গৰিষ্ঠ আৰু স্থানীয় লঘিষ্ঠ মান উলিওৱা,
যদি আছে।

10. A particle moves along the curve $6y = x^3 + 2$. Find the point(s) on
the curve at which the y -coordinate is changing 8 times as fast as
the x -coordinate. 4

এটা কণিকা $6y = x^3 + 2$ বক্রৰে চলাচল কৰে। বক্রটোৰ সেই বিন্দু (বোৰ) উলিওৱা য'ত
 x -স্থানাংক তকে 8 গুণ বেছি বেগত y -স্থানাংক পৰিৱৰ্তিত হয়।

OR / অথবা

Show that the function $f(x) = \cos 3x$ is neither strictly increasing
nor decreasing on $(0, \pi/2)$. 4

দেখুওৱা যে $f(x) = \cos 3x$ ফলনটো $(0, \pi/2)$ -ত সতত বধমান বা হ্রাসমান এটাও নহয়।

11. Evaluate $\int_0^5 (x+1) dx$ as the limit of a sum. 4

যোগফলৰ চৰম মান হিচাপে $\int_0^5 (x+1) dx$ -ৰ মান নিৰ্ণয় কৰা।

OR / অথবা

Evaluate :

মান নির্ণয় করা :

$$\int_0^{\pi/2} \frac{\sin x}{1+\cos^2 x} dx$$

12. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX , OY and OZ .

দেখুওৱা যে $\hat{i} + \hat{j} + \hat{k}$ ভেক্টরটো OX , OY আৰু OZ অক্ষৰ লগত সমতাৰে হেলনীয়া হয়।

OR / অথবা

State the triangle inequality for any two vectors and prove it.

যিকোনো দুটা ভেক্টৰৰ বাবে ত্ৰিভুজ অসমিকাটো লিখি প্ৰমাণ কৰা।

13. Probability of solving a specific problem independently by A and B

are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that —

(i) the problem is solved
(ii) exactly one of them solves the problem.

A আৰু B যে এটা বিশেষ সমস্যা স্বতন্ত্ৰভাৱে সমাধান কৰাৰ সম্ভাৱিতা কৰ্মে $\frac{1}{2}$ আৰু $\frac{1}{3}$ । যদি

সমস্যাটো সমাধানৰ বাবে উভয়ে স্বতন্ত্ৰভাৱে চেষ্টা কৰে, তেন্তে সম্ভাৱিতা নিৰ্ণয় কৰা যাতে —

(i) সমস্যাটো সমাধান হয়

(ii) তেওঁলোকৰ ঠিক এজনে সমস্যাটোৰ সমাধান আগবঢ়ায়।

OR / অথবা

Let X denote the number of hours Rita studies during a randomly selected school day. The probability that X can take the values x , has the following form :

$$P(X=x) = \begin{cases} 0.1, & \text{if } x=0 \\ kx, & \text{if } x=1 \text{ or } 2 \\ k(5-x), & \text{if } x=3 \text{ or } 4 \\ 0, & \text{otherwise} \end{cases}$$

where k is an unknown constant.

(a) Find the value of k .

(b) What is the probability that Rita studies at least two hours, exactly two hours and at most two hours ?

যদিচিকভাবে নির্বাচন করা স্কুলীয়া দিনত কোনোবা এদিন বীতাব অধ্যয়ন কৰা মুঠ ঘণ্টাৰ সংখ্যাটো X ৰে বুজোৱা হ'ল। X -ৰ মান x হোৱাৰ সম্ভাৰিতাক নিম্নোক্ত কৰ্পত প্ৰকাশ কৰা হৈছে :

$$P(X=x) = \begin{cases} 0.1, & \text{যদি } x = 0 \\ kx, & \text{যদি } x = 1 \text{ বা } 2 \\ k(5-x), & \text{যদি } x = 3 \text{ বা } 4 \\ 0, & \text{অন্যথা} \end{cases}$$

য'ত k এটা অজ্ঞাত ধৰক।

(a) k -ৰ মান নিৰ্ণয় কৰা।

(b) বীতাই কমপক্ষে দুই ঘণ্টা, সঠিক দুই ঘণ্টা আৰু সৰোচ দুই ঘণ্টা অধ্যয়ন কৰাৰ সম্ভাৰিতাবোৰ কিমান ?

14. Find the minors and cofactors of the elements of the determinant 3+3=6

$$\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$

$$xb(x^2 + 5x) = yb(yx + 5x)$$

$$\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$

নির্ণয়ক্টোর মৌলবোৰ অনুৰাশি আৰু সহৰাশি উলিওৱা।

OR / অথবা

Find A^{-1} by using elementary transformation, where —

6

মৌলিক ক্রপান্তৰ প্ৰক্ৰিয়া প্ৰয়োগ কৰি A^{-1} উলিওৱা য'ত —

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

15. Define homogeneous function of degree n . Solve the differential equation 1+5=6

$$(x^2 + xy) dy = (x^2 + y^2) dx$$

n মাত্রার সমমাত্রিক ফলনের সংজ্ঞা দিয়া।

$(x^2 + xy) dy = (x^2 + y^2) dx$ অরকল সমীকরণটোর সমাধান উলিওৱা।

OR / অথবা

(i) Solve the differential equation : 3

অরকল সমীকরণটোর সমাধান উলিওৱা :

$$x \frac{dy}{dx} + (2x + 1)y = xe^{-2x}$$

(ii) Form the differential equation of the family of circles touching the X -axis at origin. 3

মূলবিন্দুত X -অক্ষক স্পর্শ কৰা বৃত্তৰ পৰিয়াল এটাৰ অরকল সমীকরণটো গঠন কৰা।

16. Integrate :

অনুকলন কৰা :

$$(a) \int \frac{x-1}{\sqrt{x^2-1}} dx$$

$$(b) \int x \sin^{-1} x dx$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix} = A$$

2+4=6

$$\text{bms } (\vec{a} + \vec{b} - \vec{c}) \times (\vec{a} + (\vec{b} + \vec{c})) = \vec{0}$$

$$(a) \int \left(\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x} \right) dx \quad \text{তাত্ত্ব} (\vec{a} + \vec{b} - \vec{c}) \times (\vec{a} + \vec{b} + \vec{c}) = \vec{0}$$

$$(b) \int \frac{x^3 + x + 1}{x^2 - 1} dx \quad \text{তাত্ত্ব } (\vec{a} + \vec{b} - \vec{c}) \times (\vec{a} + \vec{b} + \vec{c}) = \vec{0} \quad 2+4=6$$

17. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, prove that

$$(\vec{a} \times (\vec{b} + \vec{c})) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad \text{তাত্ত্ব } \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad 6$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad \text{তাত্ত্ব } \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$0 = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad \text{যিকোনো তিনিটা ভেক্টর } \vec{a}, \vec{b}, \vec{c} \text{-র বাবে প্রমাণ করা যে}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad \text{তাত্ত্ব } \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad 1$$

OR / অথবা

Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$.
Evaluate the quantity

$$\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \quad \text{if } |\vec{a}| = 1, |\vec{b}| = 4 \text{ and } |\vec{c}| = 2. \quad 6$$

\vec{a}, \vec{b} আৰু \vec{c} ভেক্টৰ তিনিটাই $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ চৰ্ত সিদ্ধ কৰে।

$\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ -ৰ মান নিৰ্ণয় কৰা যদিহে $|\vec{a}| = 1, |\vec{b}| = 4$ আৰু $|\vec{c}| = 2$ হয়।

18. Find the shortest distance between the lines

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) \text{ and}$$

$$\vec{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k}). \quad \text{বের্খা } \frac{x+2y+3z-5}{\sqrt{1+4+16}} \quad 6$$

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) \text{ আৰু}$$

$\vec{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k})$ বেখা দুড়ালৰ মাজৰ নূন্যতম দূৰত্ব উলিওৱা।

OR / অথবা

Find the equation of the plane passing through the point $(-1, 3, 2)$ and perpendicular to each of the planes $x+2y+3z=5$ and $3x+3y+z=0$. 6

$(-1, 3, 2)$ বিন্দুৰে যোৱা আৰু $x+2y+3z=5$ আৰু $3x+3y+z=0$ সমতল দুখনৰ প্রত্যেকৰে লম্বভাৱে থকা সমতলখনৰ সমীকৰণ উলিওৱা।

19. Minimize $Z = 3x + 5y$

subject to $x+3y \geq 3$

$$x+y \geq 2$$

$$x, y \geq 0$$

$$x+3y \geq 3$$

$$x+y \geq 2$$

$x, y \geq 0$ সীমাবদ্ধতা সাপেক্ষে $Z = 3x + 5y$ -ৰ সবনিম্ন মান উলিওৱা।

OR / অথবা

Minimise and Maximise $Z = 5x + 10y$

subject to

$$x + 2y \leq 120$$

$$x + y \geq 60$$

$$x - 2y \geq 0$$

$$x, y \geq 0$$

6

$$x + 2y \leq 120$$

$$x + y \geq 60$$

$$x - 2y \geq 0$$

$x, y \geq 0$ সাপেক্ষে $Z = 5x + 10y$ -র সর্বোচ্চ আৰু সবৰ্নিম মান উলিওৱা।

20. Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is a hostlier ?

6

এখন মহাবিদ্যালয়ৰ 60% যে ছাত্রাবাসত আৰু 40% যে ছাত্রাবাসত নাথাকে বুলি জানিব পৰা গ'ল। আগৰ বছৰৰ ফলাফল অনুসৰি বছৰেকীয়া পৰীক্ষাত ছাত্রাবাসত থকা সকলো ছাত্র 30% যে আৰু ছাত্রাবাসত নথকা ছাত্রসকলৰ 20% যে A গ্ৰেড পাইছিল। বছৰৰ অন্তত মহাবিদ্যালয়খনৰ যাদৃচ্ছিকভাৱে বাছনি কৰা এজন ছাত্রই A গ্ৰেড পালে। ছাত্ৰজন ছাত্রাবাসৰ আবাসী হোৱাৰ সম্ভাৱিতা কিমান ?

OR / অথবা

Find the mean number of heads in three tosses of a fair coin.

6

এটা নিখুঁত মুদ্রা তিনিবাৰ টছ কৰি পোৱা মুণ্ড সংখ্যাৰ মাধ্য নিৰ্ণয় কৰা।

